Formation and stability of Vitamin E nano-emulsion based delivery systems by spontaneous emulsification method: Glycerol as a co-solvent
Authors: not saved
Abstract:
There is considerable interest in using nano-emulsions (NEs) as delivery systems for lipophilicbioactive ingredients. In this study, the influence of G on the properties of vitamin E (VE) enriched NEsprepared using spontaneous emulsification (SE) method, were investigated. The particle size and optical clarityof the NEs depended strongly on the co-solvent presence, absence, and concentration. The smallest droplets(mean diameter less than 23.5 and 236.771 nm) and highest transparency (lowest turbidity, 0.0069 and 0.0161 cm-1) were observed in the absence of G (A formulation) and the presence of 30 wt.% G (D formulation), respectively. However, these NEs were highly unstable for droplet growth during storage, especially at high temperatures, which was attributed to coalescence and Ostwald ripening (OR). Dilution of the NEs (100× with water) before of storage considerably were improved their storage stability especially at higher storage temperatures. Undiluted NEs exhibited a sharp and irreversible increase in turbidity upon heating: ≈75 °C and 70 °C for A formulation and D formulation, respectively. Diluted NEs had much better thermal stability, with a sharp increase in turbidity occurring at ≈75 °C for these systems. This study provides useful information for use in pharmaceutical, personal care, and food products.
similar resources
O/W nano-emulsion formation using an isothermal low-energy emulsification method in a mixture of polyglycerol polyricinoleate and hexaglycerol monolaurate with glycerol system.
We investigated how phase behavior changes by replacing water with glycerol in water/mixture of polyglycerol polyricinoleate (PGPR) and hexaglycerol monolaurate (HGML) /vegetable oil system, and studied the effect of glycerol on o/w nano-emulsion formation using an isothermal low-energy method. In the phase behavior study, the liquid crystalline phase (Lc) + the sponge phase (L3) expanded towar...
full textFerulic Acid Lecithin-Based Nano-Emulsions Prepared by Using Spontaneous Emulsification Process
Ferulic acid (4-hydroxy-3-methoxycinnamic acid), an effective component of medical plant, is a phenolic acid with low toxicity that can be absorbed and easily metabolized in the human body. The solubility of Ferulic Acid (FA) is very low in aqueous solutions which can cause problem in preparation of pharmaceutical products, but it can easily be dissolved in oil/water interface of <...
full textTransdermal Delivery of Desmopressin Acetate from Water-in- Oil Nano/submicron Emulsion Systems
Desmopressin acetate is a potent synthetic peptide hormone. A more acceptable route of Desmopressin acetate is a potent synthetic peptide hormone. That is administered via parenteral, intranasal, and oral routes. A more acceptable route of administration with potentially good bioavailability could be offered by transdermal delivery. The present work reports on the development of water-in-oil (w...
full textEmulsion Formation, Stability, and Rheology
Emulsions are a class of disperse systems consisting of two immiscible liquids [1–3]. The liquid droplets (the disperse phase) are dispersed in a liquid medium (the continuous phase). Several classes may be distinguished: oil-in-water (O/W), water-in-oil (W/O), and oil-in-oil (O/O). The latter class may be exemplified by an emulsion consisting of a polar oil (e.g., propylene glycol) dispersed i...
full textEnhancing Bio-Availability of Vitamin D by Nano-Engineered Based Delivery Systems- An Overview
These functional foods designed to provide health benefits beyond basic nutrition (KayaCeliker and Mallikarjunan, 2012). Accruing evidences have acclaimed that dietary consumption of vitamin D is linked with low risks of multiple chronic diseases (Calvo et al., 2013; Green et al., 2010; Hohman et al., 2011; Jasinghe et al., 2005; Keane et al., 1998; Keegan et al., 2013; Ko et al., 2008; Koyyala...
full textPluronic as nano-carier for drug delivery systems
A common approach for building a drug delivery system is to incorporate the drug within the nanocarrier that results in increased solubility, metabolic stability, and improved circulation time. However, recent developments indicate that selection of polymer nanomaterials can implement more than only inert carrier functions by being biological response modifiers. One representative of such mater...
full textMy Resources
Journal title
volume 7 issue 2
pages 177- 197
publication date 2018-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023